Chapter 11

- Know the difference between hypertensive urgency and hypertensive emergency
- Be aware of compensatory responses to antihypertensive drugs (Table 11-1)
- Know sympathoplegics that act in the CNS (Clonidine, Methyldopa)
- _ Mechanisms of action
- _ Effects
- _ Clinical uses
- _ Toxicity
 - Be aware that ganglion blocking drugs and that they are very potent
 - Recollect connection of MAO inhibitors with hypertension
 - Know adrenergic blockers
- _ Mechanisms of action
- _ Effects
- _ Clinical uses
- _ Toxicity
 - Vasodilators

_Names

- _ Mechanisms of action
- _ Effects
- _ Clinical uses
- _ Toxicity
 - ACE and Renin inhibitors

_Names

- _ Mechanisms of action
- _ Effects
- _ Clinical uses
- _ Toxicity
 - Treatment approaches for Hypertensive emergency
 - Drug of choices to treat hypertension in different clinical scenarios

<u>Chapter 17</u>

- Physiologic effects of Angiotensin
- Angiotensin antagonists

_Names

- _ Mechanisms of action
- _ Effects
- _ Clinical uses
- _ Toxicity
- _ Effects on cardiac remodeling
 - Know vasopeptidase inhibitors

_Names

_ Mechanisms of action

- _ Effects
- _ Clinical uses
- _ Toxicity
 - Physiologic effects of Bradykinin and drugs that interfere with it (Ecallantide, Icatibant)

_Names

- _ Mechanisms of action
- _ Effects
- _ Clinical uses
- _ Toxicity
 - Know names of natriuretic peptides (ANP,BNP)
- _ Clinical implications
- _ Effects
- _ Know what Nesiritide is
 - Know effects of endothelins
 - ET A antagonists Bosentan, Ambrisentan, Macicentan
 - Their mechanism of action
 - clinical application
 - be aware of what Riociguat is (lower yield)
 - Know what VIP, Substance P, CGRP and NPY are, what are the effects that they cause
 - _ drugs associated with them Capsaicin, Aprepitant, Fosamprepitant
 - Know what is the difference between effects caused by V1 and V1 receptor activation
 - Know what Tolvaptan and Conivaptan are

<u>Chapter 12</u>

- Be able to list and describe different types of angina
- Be able to list the determinants of cardiac oxygen requirement and differentiate them as diastolic factors and systolic factors
- Be able to define preload and afterload and know what they are determined by
- Be able to define double product
- Know the major therapeutic strategies for angina
- Describe nitroglycerin
- _ Which form is the most rapid one
- _ Mechanism of action
- _ Effects
- _ Clinical uses
- _ Toxicity of nitrates and nitrites

_ Mechanism of nitrites for treating Cyanide poisoning

- _ Drug-to-drug interactions in case of taking nitrates together with PDE5 inhibitors
 - Describe calcium channel blockers
- _Classification
- _ Mechanism of action
- _ Effects
- _ Clinical use
- _ Toxicity
 - Describe beta-blockers
- _ Classification
- _ Mechanism of action
- _ Effects
- _ Clinical use
- _ Toxicity
 - Describe Ranolazine _ the mechanism of action, effects and clinical use.
 - Describe ivabradine _ the mechanism of action, effects and clinical use.
 - List nonpharmacologic therapeutic options of angina

Chapter 19

- Know what and how endogenous and exogenous NO is produced
- Effects of NO on smooth muscle (cGMP), cell adhesion, inflammation and other effects

<u>Chapter 13</u>

- Describe pathophysiology behind heart failure
- Know what Figure 13-1 and Figure 13-2 show
- Know and describe
 - Therapeutic strategies for treatment of HF
 - Know names and mechanisms of action of drugs that have long- term beneficial_effects.
 - Table 13-1 (focus more on drug targets and mechanisms of action, still read through which types of HF they are used)
- Cardiac glycosides Digoxin
 - Mechanism of action (figure 13-1)
 - Cardiac Effects
 - Clinical uses
 - Interactions
 - Toxicity and Approach to treatment
- Describe the use of following drugs in Heart Failure mechanisms, effects, toxicities, indications, contraindications (under name "Other drugs used in congestive heart failure)
 - Diuretics

- Angiotensin antagonists
- Beta-1-adrenoreceptor agonists
- Beta-adrenoreceptor antagonists
- Phosphodiesterase inhibitors
- Vasodilators

Chapter 14

- Describe mechanism of action and classes of antiarrhythmic medications
- Explain according to what are they classified
- Describe mechanism of action, side effects, possible drug drug interactions if such exist and clinical applications of the following drugs:
 - Quinidine
 - Procainamide
 - o Disopyramide
 - o Lidocaine
 - \circ Mexiletine
 - \circ Flecanide
 - \circ Propafenone
 - o Beta blockers
 - \circ Amiodarone
 - o Ibutilide
 - \circ Dofetilide
 - o Sotalol
 - o Diltiazem
 - o Verapamil
 - Adenosine
 - Magnesium
- Identify Procainamide as one of the first choice medications for WPW syndrome
- Classify aforementioned drugs into appropriate classes

<u>Chapter 15</u>

- Be able to describe and identify tubule transport systems in the kidney and sites of action of diuretics (Figure 15-1)
- Know the physiology of proximal convoluted tubule;
- Be able to describe carbonic anhydrase inhibitors

_Names

- _ Mechanism of action
- _ Effects
- _ Clinical uses
- _ Toxicity

- Know the physiology of thick ascending limb of the loop of Henle
- Know the mechanism of calcium and magnesium reabsorption in the ascending limb of the loop of Henle
- Be able to describe loop diuretics

_Names

- _ Mechanism of action
- _Effects
- _ Clinical uses
- _ Toxicity
 - Know the physiology of distal convoluted tubule
 - Be able to describe thiazide diuretics

_Names

- _ Mechanism of action
- _ Effects
- _ Clinical uses
- _ Toxicity
 - Know the physiology of cortical collecting tubule
 - Be able to describe potassium-sparing diuretics

_Names

- _ Mechanisms of action
- _ Effects
- _ Clinical uses
- _ Toxicity
 - Be able to describe osmotic diuretics

_Names

- _ Mechanisms of action
- _ Effects
- _ Clinical uses
- _ Toxicity
 - Be able to describe SGLT2 antagonists

_Names

- _ Mechanisms of action
- _Effects
- _ Clinical uses
- _ Toxicity
 - Be able to describe ADH agonists and antagonists
- _Names
- _ Mechanisms of action
- _ Effects
- _ Clinical uses
- _ Toxicity

Chapter 34

- 1. Major classes of anticlotting drugs and compare their usefulness in venous and arterial thromboses.
- 2. Main classes of anticoagulants and their mechanisms of action
- 3. Explain why the onset of warfarin's action is relatively slow.
- 4. Compare the oral anticoagulants, standard heparin, and LMW heparins with respect to pharmacokinetics, mechanisms, and toxicity.
- 5. Give several examples of warfarin's role in pharmacokinetic and pharmacodynamic drug interactions.
- 6. Role of activated platelets at the site of a damaged blood vessel wall and sites where the major classes of antiplatelet drugs act.
- 7. Pharmacokinetics, clinical uses, and toxicities of the major antiplatelet drugs.
- 8. Mechanism of action, clinical uses, and toxicities of the oral anticoagulants (warfarin, rivaroxaban, and dabigatran).
- 9. Drugs used to treat disorders of excessive bleeding

Chapter 18

- 1. Major effects of PGE1, PGE2, PGF2α, PGI2, LTB4, LTC4, and LTD4.
- 2. Cellular sites of synthesis and the effects of thromboxane and prostacyclin in the cardiovascular system.
- 3. Types of currently available agonists and antagonists of leukotrienes and prostaglandins and their targets (receptors or enzymes).
- 4. Different effects of aspirin on prostaglandin, thromboxane, and leukotriene synthesis.

Chapter 36

- 1. Effects of NSAIDs on prostaglandin synthesis.
- 2. Functions of COX-1 and COX-2.
- 3. Actions and toxicity of aspirin, the older nonselective NSAIDs, and the COX-2-selective drugs.
- 4. Why several of the highly selective COX-2 inhibitors have been withdrawn from the market.
- 5. Toxic effects of aspirin.
- 6. Effects and the major toxicity of acetaminophen.
- 7. Disease-modifying antirheumatic drugs (DMARDs) and their toxicity.
- 8. Explain why patients need to be screened for tuberculosis prior to initiating anti-TNFalpha- therapy.
- 9. Pharmacologic treatment of acute and chronic gout.
- 10. Mechanisms of action and toxicity of different drug groups used in gout.

Chapter 20

1. Pathophysiology of asthma and COPD

- 2. Strategies of asthma therapy
 - A. Treatment strategy for acute bronchospasm
 - B. Long-term preventive treatment of Asthma
- 3. Beta adrenoreceptor agonists used for the treatment of asthma and COPD (short acting vs long acting, mechanism of action, route of administration, clinical use, toxicity)
- 4. Methylxanthines (mechanism of action, clinical use, toxicity)
- 5. Muscarinic antagonists used for asthma and COPD (mechanism of action, clinical use, toxicity)
- 6. Corticosteroids (aerosol vs systemic, mechanism of action, clinical use, toxicity)
- 7. Leukotriene antagonists (mechanism of action, clinical use, toxicity)
- 8. Cromolyn and nedocromil (mechanism of action, clinical use)
- 9. Anti-IgE antibodies (omalizumab)
- 10. Strategies of COPD treatment